题目:
原理:如果点在三角形内部,则三个小三角形的面积之和等于大三角形的面积
重点是~
//果园里的树 #include#include #define EPS 1e-9using namespace std;double area2(double x0, double y0, double x1, double y1, double x2, double y2){ double s = x0 * y1 + x1 * y2 + x2 * y0 - x0 * y2 - x1 * y0 - x2 * y1; if(s < 0) s = -1 * s; return s;}int main(){ double x0, y0, x1, y1, x2, y2; cin >> x0 >> y0 >> x1 >> y1 >> x2 >> y2; double min_x, min_y, max_x, max_y; //计算包含三角形的最小矩形 min_x = x0 < x1 ? x0 : x1; min_x = min_x < x2 ? min_x : x2; min_x = floor(min_x); //下限 min_y = y0 < y1 ? y0 : y1; min_y = min_y < y2 ? min_y : y2; min_y = floor(min_y); max_x = x0 > x1 ? x0 : x1; max_x = max_x > x2 ? max_x : x2; max_x = ceil(max_x); //上限 max_y = y0 > y1 ? y0 : y1; max_y = max_y > y2 ? max_y : y2; max_y = ceil(max_y); //对矩形内的点依次做判断 double s = area2(x0, y0, x1, y1, x2, y2); int c1 = 0, c2 = 0; for(int i = min_x; i <= max_x; i++) { for(int j = min_y; j <= max_y; j++) { double s1 = area2(i, j, x0, y0, x1, y1); double s2 = area2(i, j, x0, y0, x2, y2); double s3 = area2(i, j, x1, y1, x2, y2); if(s1 + s2 + s3 - s <= EPS) //分布在三角形内部的坐标点 c1++; if((s1 <= EPS) || (s2 <= EPS) || (s3 <= EPS)) //分布在三角形边界的坐标点 c2++; } } cout << c1 << endl; cout << c2 << endl; return 0;}